Search results for "Solar-induced chlorophyll fluorescence"

showing 3 items of 3 documents

Performance of Spectral Fitting Methods for vegetation fluorescence quantification

2010

The Fraunhofer Line Discriminator (FLD) principle has long been considered as the reference method to quantify solar-induced chlorophyll fluorescence (F) from passive remote sensing measurements. Recently, alternative retrieval algorithms based on the spectral fitting of hyperspectral radiance observations, Spectral Fitting Methods (SFMs), have been proposed. The aim of this manuscript is to investigate the performance of such algorithms and to provide relevant information regarding their use. FLD and SFMs were used to estimate F starting from Top Of Canopy (TOC) fluxes at very high spectral resolution (0.12 nm) and sampling interval (0.1 nm), exploiting the O2-B (687.0 nm) and O2-A (760.6 …

DiscriminatorreflectanceHyperspectral remote sensingSolar-induced chlorophyll fluorescenceMETIS-304492Soil Science550 - Earth sciencesFraunhofer Line Discriminatorin-vivoNoise (electronics)Spectral lineRadiative transfer simulationLaboratory of Geo-information Science and Remote SensingSampling (signal processing)luminescenceLaboratorium voor Geo-informatiekunde en Remote Sensinginduced chlorophyll fluorescenceComputers in Earth SciencesSpectral resolutionMathematicsRemote sensingcanopymodelphotosynthesisscatteringairborneHyperspectral imagingGeologySpectral Fitting MethodPE&RCAGR/14 - PEDOLOGIASpectroradiometerspectroradiometerRadianceREMOTE SENSING OF ENVIRONMENT
researchProduct

Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications

2009

Interest in remote sensing (RS) of solar-induced chlorophyll fluorescence (F) by terrestrial vegetation is motivated by the link of F to photosynthetic efficiency which could be exploited for large scale monitoring of plant status and functioning. Today, passive RS of F is feasible with different prototypes and commercial ground-based, airborne, and even spaceborne instruments under certain conditions. This interest is generating an increasing number of research projects linking F and RS, such as the development of new F remote retrieval techniques, the understanding of the link between the F signal and vegetation physiology and the feasibility of a satellite mission specifically designed f…

ApplicationComputer scienceSolar-induced chlorophyll fluorescenceMultispectral imageMethodSoil ScienceHyperspectral imaging550 - Earth sciencesGeologyPhotochemical Reflectance IndexPassive techniqueGEO/10 - GEOFISICA DELLA TERRA SOLIDARemote sensing (archaeology)DevicesRadianceSatelliteSatellite imageryComputers in Earth SciencesScale (map)Remote sensingRemote Sensing of Environment
researchProduct

Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and Photosynthesis in a Boreal Scots Pine Canopy

2019

Solar induced chlorophyll fluorescence has been shown to be increasingly an useful proxy for the estimation of gross primary productivity (GPP), at a range of spatial scales. Here, we explore the seasonality in a continuous time series of canopy solar induced fluorescence (hereafter SiF) and its relation to canopy gross primary production (GPP), canopy light use efficiency (LUE), and direct estimates of leaf level photochemical efficiency in an evergreen canopy. SiF was calculated using infilling in two bands from the incoming and reflected radiance using a pair of Ocean Optics USB2000+ spectrometers operated in a dual field of view mode, sampling at a 30 min time step using custom written …

Canopy010504 meteorology & atmospheric sciencesRETRIEVAL0211 other engineering and technologiesEddy covarianceBoreal ecosystemlight-use efficiency (LUE)02 engineering and technologyAtmospheric sciencesPhotochemical Reflectance Index01 natural sciencesNormalized Difference Vegetation Indexseasonal dynamicsPHOTOSYSTEM-IIPHOTOCHEMICAL REFLECTANCE INDEXDiurnal cyclephotosynthetic efficiencySPECTROMETERFIELDWATER-STRESSlcsh:ScienceTEMPERATUREconiferous forest021101 geological & geomatics engineering0105 earth and related environmental sciencessolar-induced chlorophyll fluorescence (SiF); seasonal dynamics; photosynthetic efficiency; proximal remote sensing; coniferous forest; gross primary productivity (GPP); light-use efficiency (LUE); Fraunhofer Line Discriminator (FLD); flux tower4112 Forestrygross primary productivity (GPP)SUN-INDUCED FLUORESCENCEPrimary productionGROSS PRIMARY PRODUCTIONsolar-induced chlorophyll fluorescence (SiF)15. Life on landproximal remote sensing13. Climate actionLIGHT-USE EFFICIENCYRadianceGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QFraunhofer Line Discriminator (FLD)flux towerRemote Sensing; Volume 11; Issue 3; Pages: 273
researchProduct